跳到主要内容

Matrix Theory - hw6

(A2)2(A-2)^2etAe^{tA},并求解 dXdt=AX\frac{\mathrm{d}X}{\mathrm{d}t}=AX, X=(x1 x2)TX=(x_1\ x_2)^T,且X(0)=(1 1)TX(0) = (1\ 1)^T.

A=(3111)A= \begin{align*} \begin{pmatrix} 3&1\\ -1&1\\ \end{pmatrix} \end{align*}

Claude (Wrong)

(A2I)2=(1111)2=(0220)(A-2I)^2 = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}^2 = \begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix}

etA=k=0tkk!Ak=I+tA+t22!A2+e^{tA} = \sum\limits_{k=0}^\infty \frac{t^k}{k!}A^k = I + tA + \frac{t^2}{2!}A^2 + \ldots

给出的微分方程为: ddt(x1x2)=(3111)(x1x2)\frac{d}{dt} \begin{pmatrix} x_1\\x_2 \end{pmatrix} = \begin{pmatrix} 3 & 1\\ -1 & 1 \end{pmatrix}\begin{pmatrix} x_1\\x_2 \end{pmatrix}

带入初始条件X(0)=(11)X(0) = \begin{pmatrix} 1\\1 \end{pmatrix},可以解得: X(t)=etA(11)=(11)+t(3111)(11)+t22!(0220)(11)+X(t) = e^{tA}\begin{pmatrix} 1\\1 \end{pmatrix} = \begin{pmatrix} 1\\1 \end{pmatrix} + t\begin{pmatrix} 3 & 1\\ -1 & 1 \end{pmatrix}\begin{pmatrix} 1\\1 \end{pmatrix} + \frac{t^2}{2!}\begin{pmatrix} 0 & -2\\ -2 & 0 \end{pmatrix}\begin{pmatrix} 1\\1 \end{pmatrix} + \ldots

所以X(t)=(1+3t1t)X(t) = \begin{pmatrix} 1 + 3t\\ 1 - t \end{pmatrix}